Copied to
clipboard

G = C23.D7order 112 = 24·7

The non-split extension by C23 of D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.D7, C22⋊Dic7, C14.11D4, C22.7D14, (C2×C14)⋊2C4, C72(C22⋊C4), C14.9(C2×C4), (C2×Dic7)⋊2C2, C2.3(C7⋊D4), C2.5(C2×Dic7), (C22×C14).2C2, (C2×C14).7C22, SmallGroup(112,18)

Series: Derived Chief Lower central Upper central

C1C14 — C23.D7
C1C7C14C2×C14C2×Dic7 — C23.D7
C7C14 — C23.D7
C1C22C23

Generators and relations for C23.D7
 G = < a,b,c,d,e | a2=b2=c2=d7=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C22
2C22
14C4
14C4
2C14
2C14
7C2×C4
7C2×C4
2Dic7
2C2×C14
2C2×C14
2Dic7
7C22⋊C4

Smallest permutation representation of C23.D7
On 56 points
Generators in S56
(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 49 20 35)(2 48 21 34)(3 47 15 33)(4 46 16 32)(5 45 17 31)(6 44 18 30)(7 43 19 29)(8 54 22 40)(9 53 23 39)(10 52 24 38)(11 51 25 37)(12 50 26 36)(13 56 27 42)(14 55 28 41)

G:=sub<Sym(56)| (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,49,20,35)(2,48,21,34)(3,47,15,33)(4,46,16,32)(5,45,17,31)(6,44,18,30)(7,43,19,29)(8,54,22,40)(9,53,23,39)(10,52,24,38)(11,51,25,37)(12,50,26,36)(13,56,27,42)(14,55,28,41)>;

G:=Group( (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,49,20,35)(2,48,21,34)(3,47,15,33)(4,46,16,32)(5,45,17,31)(6,44,18,30)(7,43,19,29)(8,54,22,40)(9,53,23,39)(10,52,24,38)(11,51,25,37)(12,50,26,36)(13,56,27,42)(14,55,28,41) );

G=PermutationGroup([[(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,49,20,35),(2,48,21,34),(3,47,15,33),(4,46,16,32),(5,45,17,31),(6,44,18,30),(7,43,19,29),(8,54,22,40),(9,53,23,39),(10,52,24,38),(11,51,25,37),(12,50,26,36),(13,56,27,42),(14,55,28,41)]])

C23.D7 is a maximal subgroup of
C23.1D14  C23⋊Dic7  C23.11D14  C22⋊Dic14  C23.D14  D7×C22⋊C4  D14.D4  Dic7.D4  C28.48D4  C23.21D14  C4×C7⋊D4  C23.23D14  D4×Dic7  C23.18D14  C28.17D4  C23⋊D14  C282D4  Dic7⋊D4  C24⋊D7  C23.2F7  D6⋊Dic7  C42.38D4  A4⋊Dic7
C23.D7 is a maximal quotient of
C28.55D4  C14.C42  D4⋊Dic7  C28.D4  C23⋊Dic7  Q8⋊Dic7  C28.10D4  D42Dic7  D6⋊Dic7  C42.38D4

34 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C14A···14U
order122222444477714···14
size111122141414142222···2

34 irreducible representations

dim111122222
type+++++-+
imageC1C2C2C4D4D7Dic7D14C7⋊D4
kernelC23.D7C2×Dic7C22×C14C2×C14C14C23C22C22C2
# reps1214236312

Matrix representation of C23.D7 in GL3(𝔽29) generated by

2800
010
0028
,
2800
0280
0028
,
100
0280
0028
,
100
0160
0020
,
1200
0020
0130
G:=sub<GL(3,GF(29))| [28,0,0,0,1,0,0,0,28],[28,0,0,0,28,0,0,0,28],[1,0,0,0,28,0,0,0,28],[1,0,0,0,16,0,0,0,20],[12,0,0,0,0,13,0,20,0] >;

C23.D7 in GAP, Magma, Sage, TeX

C_2^3.D_7
% in TeX

G:=Group("C2^3.D7");
// GroupNames label

G:=SmallGroup(112,18);
// by ID

G=gap.SmallGroup(112,18);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,20,101,2404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^7=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23.D7 in TeX

׿
×
𝔽